Removing the Truck from the Carbon Equation

Deep Dive Nikola Two Prototype
Certain statements included in this presentation that are not historical facts are forward looking statements for purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995. Forward looking statements generally are accompanied by words such as "believe," "may," "will," "estimate," "continue," "anticipate," "intend," "expect," "should," "would," "plan," "predict," "potential," "seem," "seek," "future," "outlook," and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward looking statements include, but are not limited to, statements regarding the company's expectations regarding its business, business model and strategy; the company's expectations regarding its projected truck builds and related specifications; the company's expectations for its trucks and market acceptance of electric trucks; and market opportunity. These statements are based on various assumptions, whether or not identified in this presentation, and on the current expectations of Nikola's management and are not predictions of actual performance. Forward looking statements are subject to a number of risks and uncertainties that could cause actual results to differ materially from the forward looking statements, including but not limited to general economic, financial, legal, regulatory, political and business conditions and changes in domestic and foreign markets; the potential effects of COVID-19; the outcome of legal proceedings to which Nikola is, or may become a party; failure to realize the anticipated benefits of the recently completed business combination; the conversion of pre-orders into binding orders; risks related to the rollout of Nikola's business and the timing of expected business milestones; the effects of competition on Nikola's future business; the availability of capital; and the other risks detailed from time to time under the heading "Risk Factors" in Nikola's reports filed with the Securities and Exchange Commission, including its quarterly report on Form 10-Q for the quarter ended June 30, 2020 and other documents Nikola files with the SEC. If any of these risks materialize or our assumptions prove incorrect, actual results could differ materially from the results implied by these forward looking statements. These forward looking statements speak only as of the date hereof and Nikola specifically disclaims any obligation to update these forward looking statements.

This presentation contains trademarks and trade names that are the property of their respective owners.
AGENDA

- Nikola Overview & Timeline
- Nikola Two Fuel Cell Vehicle – Alpha Prototypes
 - Patented Technology
 - Hydrogen Storage & Fuel Cell
 - Development & Validation Testing
- Nikola Tre BEV and FCEV Preview
- HD Hydrogen Fueling Stations
 - HD H2 Fueling & Communications Development
- US DOE Project: Nikola Novel HD Fuel Cell MEA
- Conclusion
FC VEHICLES + H2 INFRASTRUCTURE
PARALLEL DEVELOPMENT WITH PARTNERS

FUEL CELL TRUCKS
- Long Range, Heavy Duty Class 8 / 40-ton Commercial Vehicle
- High Torque & Power Output
- Zero Tailpipe Emissions and Very Low WTW

HD H2 STATIONS
- < 20 min Fast Fueling (in development with NEL)
- 8T On-Site Hydrogen Generation from Grid with Supplemented Renewable Energy
- 10T Onsite Storage
- Heavy Duty & Light Duty Fueling
NORTH AMERICA

FCEV

- **Status:**
 - Alpha Prototypes developed 2018, debut April 2019
 - Dyno and closed course testing (Michigan and Arizona)
 - Public demonstration at Nikola World and beer delivery at Anheuser Busch Sustainability event
 - Bosch Fuel Cell System used in Prototype

EUROPE & NORTH AMERICA

BEV & FCEV

- **Status:**
 - Developed with CNHi, based on Iveco S-Way
 - BEV (720kWh) Prototypes are being built in Germany, SOP (Ulm) in Q4 2021
 - FCEV Prototypes will be built in 2021, SOP in 2023
 - Bosch Fuel Cell System
NIKOLA HIGH LEVEL MILESTONE PLAN

- **4Q2020**
 - Complete Tre BEV prototypes
- **1Q2021**
 - Substantial completion of JV manufacturing building modifications in Ulm
- **2Q2021**
 - Break ground on first commercial hydrogen station
- **3Q2021**
 - Ulm facility assembly line complete for start of Tre BEV production
- **4Q2021**
 - Complete Phase I of Coolidge, AZ manufacturing facility
 - Begin testing FCEV truck prototypes
- **2022**
 - Begin Tre BEV production in Ulm
 - Begin U.S. Tre BEV production in Coolidge facility
- **2023**
 - Complete Coolidge facility

- **Manufacturing**
- **Tre BEV**
- **FCEV Truck**
- **Hydrogen Station**
NIKOLA TWO FCEV
ALPHA Prototype

POWER ELECTRONICS / DISTRIBUTION UNIT
Distributes energy to axles and vehicle
- Energy Flow & Conversion

DUAL STACK FUEL CELL
Generates Electricity
- 240 kW Fuel Cell (Gross)
- Heavy-Duty Application
- Custom Build

INDEPENDENT SUSPENSION
Independent Control
- Stability
- Improved ride

HYDROGEN TANKS
Hydrogen Storage
- 61 kg

E-AXLES / ELECTRIC MOTORS
Power the Drive Axles
- Motor and transmission in on compact unit
- Dual-motor commercial-vehicle eAxle
- 2 motors (per axle)
- Torque vectoring capable

BATTERIES
Handle Dynamic Load Conditions (Acceleration, Regenerative Braking)
- 250 kWh, 710 Volt capable battery pack
NIKOLA TWO SYSTEM INTEGRATION PATENTS

SUSPENSION, ELECTRIC AXLE AND GEARBOX

FIG. 1

EP3705321A1- Vehicle Rear Suspension

FIG. 11

10589788/ 20200239076- Vehicle Frame Arrangement
NIKOLA TWO SYSTEM INTEGRATION PATENTS
HYDROGEN STORAGE INTEGRATION

FIG. 2

FIG. 5

10589788/ 20200239076 - Vehicle Frame Arrangement
NIKOLA TWO
HYDROGEN STORAGE
ALPHA PROTOTYPE SYSTEM

- Nine 70MPa Type IV Hydrogen Tanks, 61kg Hydrogen Storage
- Light-duty valving from production FCEVs
- Partially validated GTR #13 Test/CSA with 20,000 hydraulic fueling cycles, Valves Design Validation Tested.
- Light-duty Refueling with Nikola-specific SAE J2799/ J2601 Communication to Station
- Integrated Fire Shield between Battery System and HSS (Patent Pending)
- Six H2 Detectors mounted throughout vehicle
NIKOLA TWO
ALPHA FUEL CELL SYSTEM
BOSCH-POWERCELL TWINBOX

- System power 240kW total
 - 2x 120kW Stack Gross
 - 2x 100kW System Net
- Based on PowerCell S3 Stack
- Alpha/Beta level Balance of Plant components
- Shock, Vibration Resistant
- Series suppliers for Stack (Freudenberg, Umicore, DANA, etc.)

*Images from PowerCell website
FUEL CELL STACK EXTERNAL TESTING
POWERCELL, SWEDEN

- Fuel Cell Stack Testing (120kW) FAT & DV Testing on Greenlight FC Test Stand
- Polarization RH-Stoichiometry-Pressure Sensitivity/ Dynamic Drive Cycle
- Initial Accelerated Stress Test (AST) Evaluation
FUEL CELL SYSTEM EXTERNAL TESTING

SYSTEM TEST STAND WITH INSTRUMENTATION

- Two Single Stack Fuel Cell System Testing for FAT and Basic Function Test
- Functional Safety HV/H2 Safety (Shutoff) Testing including DCDC Converter
- FCCU Calibration Testing (Operation/ Diagnostics)
VEHICLE SAFETY
CRASH MODELING AND SIMULATION

- **Crash modeling:** Conducted crash models to simulate frontal and lateral impacts to identify safety issues and optimize design.

- **Simulations from validated Crash:** Provided critical safety characteristics such as crash displacements, setting of sensors, isolation of HV bus.
NIKOLA TRE BEV
BASED ON IVECO S-WAY CHASSIS

- BEV Prototypes being built in Ulm, Germany
- 720kWh battery storage / 350kW charging
- 480 kW (640 hp) continuous power output at nominal voltage
- Dual motor gearbox integrated into solid axle
NIKOLA TRE
FUEL-CELL TRUCK

SHARED PLATFORM WITH
BEV VARIANT

* Image courtesy of Bosch
NIKOLA’S H2 STATION AT PHOENIX HEADQUARTERS:

HD/LD DEVELOPMENT H2 FUELING STATION WITH 1000KG STORAGE AND DISPENSING CAPABILITIES
HYDROGEN FAST FUELING DEVELOPMENT TARGETS

70 MPa
HIGH FLOW

<20 MIN
HD FUELING

60-80 kg
8T/DAY H2 STATION CONCEPT: 70 MPA HEAVY DUTY & LIGHT DUTY

- Zero Emission Power Generation
- Conversion of Electricity to Hydrogen via Electrolysis
- Onsite Hydrogen Storage Supply
- Fast 70 MPA Fueling Station
- Fast 70 MPA Hydrogen Dispenser
- Hydrogen Fuel Cell Vehicles

LD Fast Charging
LD Hydrogen Fueling
HD Hydrogen Fueling
HD FUELING EQUIPMENT DEVELOPMENT
NIKOLA CO-FOUNDED INDUSTRY GROUP

Project is fully funded by the partners and HD hardware prototypes will be tested in 2021. Nikola Chairing both ISO 17268 Standard for H2 Nozzles & ISO 19880-7 Gaseous H2 Fueling protocols.

- HD H70HF Fueling Nozzle
- Receptacle
- Hose
- Breakaway
DURABLE MEAS FOR HD FCE TRUCKS

DOE PROJECT I

- The goal of this project is to
 - Reduce/eliminate crack formation during deposition/operation \(\rightarrow\) **improve durability**
 - Improve catalyst utilization \(\rightarrow\) **Use less PGM**
 - More effectively orient ionomer, reducing SO\(_3\) poisoning \(\rightarrow\) **better mass transport and ORR activity**
 - Accurately control pore-size distribution \(\rightarrow\) **better water management and mass transport**

- Technology Improvement Targets:
 - At high RH: Reduction in flooding from “macro” pores
 - At low RH: Improvement in ionic conductivity from water condensation in primary pores

Northeastern (Prof. Mukerjee): Dual IBAD technique to produce durable catalyst powders

Georgia Tech. (Prof. Xia): Synthesize supported durable cuboctahedral PtCo catalyst

Nikola: Novel durable CL/MEA structure (Nikola IP), to form layered structures of catalyst powders and ionomer

CMU (Prof. Litster): Create CL transport models and recommend MEA formulation/optimization based on feedback from X-ray computed tomography and pFIB-SEM imaging

Reference 2020 US DOE AMR Publication

ADVANCED MEMBRANE FOR HD TRUCKS
DOE PROJECT II

FY ’20 DOE ADVANCED MEMBRANE PROJECT:

- Objectives:
 - MEA based on reinforced PFSA membrane that meets performance/durability targets at $\geq 95^\circ C$
 - Reduce radical scavenger mobility
 - Prevent ionomer radical attack
 - Develop & validate HD-specific membrane AST in conjunction with DOE FC-PAD

- Partner:
 - Chemours
 - New membrane chemistry and architecture with an immobilized radical scavenger
 - High(er) Temp. Stability – develop ionomer/reinforcement architecture
 - Optimizing membrane thickness for reduced gas crossover

OVERALL MEA DEVELOPMENT AT NIKOLA:

- Design and Develop MEAs optimized for
 - High efficiency
 - Cost
 - Durability under HD Drive Cycles

- Develop Accelerated Stress Tests (ASTs) specific to HD truck operating conditions
 - Predict fuel cell stack failure modes
 - Develop mitigation strategies
 - Materials
 - Appropriate control strategies

Reference: US DOE HT Membrane Workshop Presentation (Sept. 2020)
PATENT APPLICATION FAMILIES

EMBODYING NIKOLA’S HYDROGEN-RELATED INTELLECTUAL PROPERTY

<table>
<thead>
<tr>
<th>PATENT TITLE</th>
<th>STATUS OF U.S. APPLICATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Frame Arrangement</td>
<td>Issued – 10,589,788</td>
</tr>
<tr>
<td>High Volume, Fast H2 Fueling of a Heavy-Duty Vehicle</td>
<td>Not Yet Published</td>
</tr>
<tr>
<td>H2 Fueling with Bi-Directional Communication</td>
<td>Issued – 10,800,281</td>
</tr>
<tr>
<td>Cooling System for Fuel Cell Stacks</td>
<td>Not Yet Published</td>
</tr>
<tr>
<td>Method of Operating a Fuel Cell System for a Motor Vehicle</td>
<td>Not Yet Published</td>
</tr>
<tr>
<td>Pressurized Vessel Heat Shield and Thermal Pressure Relief System</td>
<td>Not Yet Published</td>
</tr>
<tr>
<td>Catalyst Layers of Membrane-Electrode Assemblies and Methods of Making Same</td>
<td>Not Yet Published</td>
</tr>
<tr>
<td>Systems, Methods, and Devices for Cation-Associating Fuel Cell Components</td>
<td>Not Yet Published</td>
</tr>
</tbody>
</table>

These patent applications are directed to intellectual property developed jointly by Nikola and its partners, as well as intellectual property developed solely by Nikola.

This only denotes the status of U.S. applications. Status of related applications in other jurisdictions may differ.
CONCLUSION

- Nikola Two is a running Fuel Cell Electric Prototype and in operation since 2019.
- Nikola owns IP related to vehicle integration, H2 storage & fueling, FC & system control, electric axle, suspension, and more.
- Nikola Tre BEV Truck 2021, FCEV Truck 2023, developed together with Iveco and based on S-Way chassis and cab.
- Nikola Co-Developing 70MPa HD Fueling and evaluating Fueling Hardware (nozzles, etc.) with industry group.
- Nikola H2 stations will be available to both lease customers and public for Heavy Duty and Light Duty fueling.
- Nikola working on DOE funded MEA development projects to meet durability requirements for HD (next generation fuel cell).